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Abstract: The L-dependence of the static potential between Nc quarks arranged in a

circle of radius L (a “baryon”) immersed in the hot plasma of a gauge theory with Nc

colors defines a screening length Ls. We use the AdS/CFT correspondence to compute

this screening length for the case of heavy quarks in the plasma of strongly coupled N = 4

super Yang-Mills theory moving with velocity v relative to the baryon. We find that in the

v → 1 limit, Ls ∝ (1 − v2)1/4/T , and find that corrections to this velocity dependence are

small at lower velocities. This result provides evidence for the robustness of the analogous

behavior of the screening length defined by the static quark-antiquark pair, which has been

computed previously and in QCD is relevant to quarkonium physics in heavy ion collisions.

Our results also show that as long as the hot wind is not blowing precisely perpendicular

to the plane of the baryon configuration that we analyze, the Nc different quarks are not

all affected by the wind velocity to the same degree, with those quarks lying perpendicular

to the wind direction screened most effectively.
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1. Introduction and summary

The simplest example of the AdS/CFT correspondence is provided by the duality between

N = 4 supersymmetric Yang-Mills (SYM) theory and classical gravity in AdS5 × S5 [1].

N = 4 super Yang-Mills theory is a conformally invariant theory with two parameters: the

rank of the gauge group Nc and the ’t Hooft coupling λ = g2
YMNc. In the large Nc and

large λ limit, gauge theory problems can be solved using classical gravity in AdS5 × S5

geometry. We shall work in this limit throughout this paper.

In N = 4 SYM theory at zero temperature, the static potential between a heavy

external quark and antiquark separated by a distance Lmeson is given in the large Nc and

large λ limit by [2, 3]

V (L) = − 4π2

Γ(1
4)4

√
λ

Lmeson
, (1.1)

where the 1/Lmeson behavior is required by conformal invariance. This potential is obtained

by computing the action of an extremal string world sheet, bounded at r → ∞ (r being

the fifth dimension of AdS5) by the world lines of the quark and antiquark and “hanging

down” from these world lines toward smaller r. At nonzero temperature, the potential

becomes [4]

V (Lmeson, T ) ≈
√
λf(Lmeson) Lmeson < Lmeson

c

≈ λ0g(Lmeson) Lmeson > Lmeson
c . (1.2)

In (1.2), at Lmeson
c = 0.24/T there is a change of dominance between different saddle

points and the slope of the potential changes discontinuously. When Lmeson < Lmeson
c ,

the potential is determined as at zero temperature by the area of a string world sheet

bounded by the worldlines of the quark and antiquark, but now the world sheet hangs down

into a different five-dimensional spacetime: introducing nonzero temperature in the gauge
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theory is dual to introducing a black hole horizon in the five-dimensional spacetime. When

Lmeson ≪ Lmeson
c , f(Lmeson) reduces to its zero temperature behavior (1.1). When Lmeson >

Lmeson
c , the potential arises from two disjoint strings, each separately extending downward

from the quark or antiquark all the way to the black hole horizon. At Lmeson ≫ Lmeson
c ,

g(Lmeson) is known and is determined by the exchange of the lightest supergravity mode

between the two disjoint strings [5]. It is physically intuitive to interpret Lc as the screening

length Ls of the plasma since at Lc the qualitative behavior of the potential changes. Similar

criteria are used in the definition of screening length in QCD [6], although in QCD there

is no sharply defined length scale at which screening sets in. Lattice calculations of the

static potential between a heavy quark and antiquark in QCD indicate a screening length

Ls ∼ 0.5/T in hot QCD with two flavors of light quarks [7] and Ls ∼ 0.7/T in hot QCD

with no dynamical quarks [8]. The fact that there is a sharply defined Lc in (1.2) is an

artifact of the limit in which we are working.

In refs. [9, 10], the analysis of screening was extended to the case of a quark-antiquark

pair moving through the plasma with velocity v. In that context, it proved convenient to

define a slightly different screening length Lmeson
s , which is the Lmeson beyond which no

connected extremal string world sheet hanging between the quark and antiquark can be

found. At v = 0, Lmeson
s = 0.28/T [4]. At nonzero v, up to small corrections that have

been computed [9, 10],

Lmeson
s (v, T ) ≃ Lmeson

s (0, T )(1 − v2)1/4 ∝ 1

T
(1 − v2)1/4 . (1.3)

This result, also obtained in ref. [11] and further explored in refs. [13 – 15], has proved

robust in the sense that it applies in various strongly coupled plasmas other than N = 4

SYM [13 – 15]. (See refs. [16] for other recent work.) The velocity dependence of the

screening length (1.3) suggests that in a theory containing dynamical heavy quarks and

meson bound states (which N = 4 SYM does not) the dissociation temperature Tdiss(v),

defined as the temperature above which mesons with a given velocity do not exist, should

scale with velocity as [9]

Tdiss(v) ≃ Tdiss(v = 0)(1 − v2)1/4 , (1.4)

since Tdiss(v) should be the temperature at which the screening length Lmeson
s (v) is compa-

rable to the size of the meson bound state. The scaling (1.4) indicates that slower mesons

can exist up to higher temperatures than faster ones. This result has proved robust in a

second sense, in that (1.4) has also been obtained by direct analysis of the dispersion rela-

tions of actual mesons in the plasma [17, 18], introduced by adding heavy quarks described

in the gravity dual by a D7-brane whose fluctuations are the mesons [19]. These mesons

have a limiting velocity whose temperature dependence is equivalent to (1.4) [18], up to

few percent corrections that have been computed [18].

In the present paper, we shall return to the velocity-dependent screening length and

test the robustness of (1.3) in yet a third sense, by analyzing the potential and screening

length defined by a configuration consisting of Nc external quarks arranged in a circle of
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AdS boundary Quarks

baryon vertex r=re
r

Figure 1: A sketch of a baryon configuration with Nc quarks arranged in a circle at the boundary

of the AdS space, each connected to a D5-brane located at r = re by a string.

radius L.1 In the gravity dual, there is a string hanging down from each of these quarks

and at nonzero T and large enough L, the only extremal configuration of these string

world sheets will be Nc disjoint strings. In order to obtain a baryon-like configuration, we

introduce a D5-brane into the gravity dual theory which fills the 5 spatial dimensions of

the S5 and sits at a point in AdS5, and on which Nc strings can end [22 – 24].2 This now

means that for L less than some Ls we can find configurations as in figure 1, in which

1The baryon static potential between three static quarks has been computed in QCD itself using lattice

methods at zero temperature [20], and very recently the extension of these studies to nonzero temperatures

and hence the study of baryon screening in QCD has been initiated [21].
2We shall only consider the case where all Nc strings are located at the same point in the S5; it would be

interesting to generalize our analysis to the case where there are different species of quarks corresponding

to strings located at different points in the S5 which could then end at different points on the D5-brane.

We are also neglecting the interactions between the Nc string endpoints on the D5-brane. Such interactions

can be described via the Born-Infeld action for the D5-brane, and have been analyzed in refs. [25] for the

case where the baryons are BPS objects and the analysis can be pushed through to completion. In our

case, in which supersymmetry is broken by the nonzero temperature and in which the baryon configurations

need not be BPS objects even at zero temperature, such an analysis certainly presents technical challenges

and may even be made uncontrolled by potential higher derivative corrections to the D5-brane Born-Infeld

action. We shall follow refs. [22 – 24] in neglecting string-string interactions. We shall find that the velocity

dependence of the screening length is controlled by the kinematics of the AdS black hole metric under

boosts: the fact that we find (see below) the same velocity dependence for the screening length defined

by a baryon configuration which includes a D5-brane as has been found previously for that defined by

the quark-antiquark potential whose calculation involves no D5-brane suggests, but absent a calculation

does not demonstrate, that the addition of string-string interactions on the D5-brane will not modify our

conclusions.
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the Nc strings hanging down from the quarks at the boundary of AdS5 end on the D5-

brane. Following ref. [24], we have made the arbitrary choice of placing the Nc quarks

in a circle; pursuing our analysis to the point of phenomenology would certainly require

investigating more generalized configurations.3 Our central purpose, however, is to test the

robustness of (1.3) in a theoretical context in which the D5-brane introduces a qualitatively

new element. Note that in comparing our results for baryon screening to (1.3), if we want

to compare numerical prefactors we should compare L to Lmeson/2, since we have defined

L as the radius of the circle in figure 1 rather than its diameter.

The D5-brane plays a role somewhat analogous what has been called a “baryon-

junction” in various phenomenological analyses of baryons in QCD [26]. Baryon junctions

in phenomenological analyses have usually been envisioned as well localized in (3+1)-

dimensions, but this may not be the appropriate way of thinking of the D5-brane. The

IR/UV relationship that characterizes the AdS/CFT correspondence [27] tells us that

smaller values of the fifth-dimension coordinate r correspond to larger length scales R2/r

in the (3+1)-dimensional field theory, where R is the curvature of the AdS space. The

D5-brane is located at r = re, the lowest point in r of any part of the baryon config-

uration in figure 1. It therefore represents the longest wavelength “disturbance” of the

(3+1)-dimensional gluon field (and other N = 4 SYM fields) caused by the presence of

the Nc quarks. We shall see in section 3 that in N = 4 SYM this length scale R2/re is

comparable to 2L, meaning that the baryon vertex describes a disturbance of the gluon

fields comparable in size to the circle of external quarks, not a baryon junction that is

localized in (3 + 1)-dimensions.

The results (1.3) and (1.4) have a simple physical interpretation which suggests that

they could be applicable to a wide class of theories regardless of specific details. First, note

that since Ls(0) ∼ 1
T , both (1.3) and (1.4) can be interpreted as if in their rest frame the

quark-antiquark dipole experiences a higher effective temperature T
√
γ. Although this is

not literally the case in a weakly coupled theory, in which the dipole will see a redshifted mo-

mentum distribution of quasiparticles coming at it from some directions and a blueshifted

distribution from others [28], we give an argument below for how this interpretation can

nevertheless be sensible. The result (1.3) can then be seen as validating the relevance of

this interpretation in a strongly coupled plasma. The argument is based on the idea that

quarkonium propagation and dissociation are mainly sensitive to the local energy density

of the medium. Now, in the rest frame of the dipole, the energy density ε is blue shifted

by a factor ∼ γ2 and since ε ∝ T 4 in a conformal theory, the result (1.3) is as if quarks feel

a higher effective temperature given by T
√
γ. Lattice calculations indicate that the quark-

gluon plasma in QCD is nearly conformal over a range of temperatures 1.5Tc < T . 5Tc,

3Note that for Nc = 3, there is no loss of generality in choosing the Nc quarks to lie in a single plane, but

there is still an infinite space of distinct possible configurations to consider. Many have been considered in

lattice investigations [20, 21]. It would also be worthwhile to extend our analysis to treatments of baryons

themselves, rather than simply calculating the screening length defined by a particular (in our case circular)

configuration of Nc quarks. Such an analysis would not directly address the question we pose, namely the

robustness of the velocity dependence of screening, but it would certainly be a significant step toward actual

baryon phenomenology. The methods developed in refs. [25] could provide a good starting point.
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with an energy density ε ≈ bT 4 where b is approximately constant, at about 80% of the

free theory value [30]. So it does not seem far-fetched to imagine that (1.3) could apply

to QCD. We should also note that AdS/CFT calculations in other strongly coupled gauge

theories with a gravity description are consistent with the interpretation above [14, 18] and

that for near conformal theories the deviation from conformal theory behavior appears to

be small [14]. If a velocity scaling like (1.3) and (1.4) holds for QCD, it can potentially have

important implications for quarkonium suppression in heavy ion collisions [9, 18], in par-

ticular suggesting that in a heavy ion collision at RHIC (or LHC) which does not achieve a

high enough temperature to dissociate J/Ψ (or Υ) mesons at rest, the production of these

quarkonium mesons with transverse momentum above some threshold may nevertheless be

suppressed [9].4 Our results suggest that if baryons containing three charm quarks are ever

studied in heavy ion collision experiments, the suppression of their production could be

similarly dependent on transverse momentum.

In section 2 we shall set up a general formalism for finding baryon configurations of

heavy external quarks in supergravity, with the Nc quarks arranged arbitrarily. In section 3

we shall apply this general formalism to the configuration depicted in figure 1, allowing us

to define a screening length Ls. In section 3.1 we evaluate Ls(v, T ) for the case where the

baryon configuration is moving through the plasma in a direction perpendicular to the plane

defined by the circle of quarks. (Equivalently, the “baryon” feels a plasma wind blowing

in a direction perpendicular to its plane.) Static configurations are found by extremizing

the total baryon action coming from both the strings and the D5 brane. We find static

configurations only for L < Ls(v, T ) with Ls(0, T ) = 0.094/T as in [24], comparable to
1
2L

meson(0, T ) above, and with

Ls(v, T ) =
0.083

T
(1 − v2)1/4 (1.5)

in the v → 1 limit. In this limit, we obtain (1.5) analytically. We find numerically that

Ls(v, T )T/(1 − v2)1/4 varies monotonically and smoothly from 0.094 at v = 0 to 0.083 at

v → 1, making

Ls(v, T ) ≃ Ls(0, T )(1 − v2)1/4 (1.6)

a good approximation. In section 3.2 we do a similar numerical calculation for the case

where the wind velocity is parallel to the baryon’s plane. At high velocities we find a result

4These phenomenological implications rest as much on the analysis of the velocity dependence of screen-

ing, introduced in [9] for mesons and generalized here to baryons, as they do on the construction of the

dispersion relations of the mesons themselves as in [18]. The dispersion relations extend to arbitrarily large

wave vectors: there is a limiting velocity but, for λ → ∞, no limiting momentum. At finite λ, the mesons

have nonzero widths [18]; if these widths grow with increasing meson momentum, this could serve to limit

the meson momenta also [31]. In the absence of widths, as for λ → ∞, inferences about meson production

rely upon the observation that the potential between a quark and antiquark moving with high enough ve-

locity is screened, making it unlikely that they will bind into a meson even though a slowly moving meson

state with the same momentum as the quark and antiquark pair does exist [18]. Thus, if we are to use a

baryon analysis to test the robustness of phenomenological conclusions drawn in the meson sector, a key

point to test is the velocity dependence of screening. Doing so, as in this paper, does not require analysis

of the dissociation of actual baryons.
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like (1.5) except that the proportionality constant is different for different quarks/strings,

depending weakly on the angle between the wind velocity and the string. Ls is smallest

for the quarks whose strings are oriented perpendicular to the wind, even though in the

configuration that we analyze these quarks are also closest to the D5-brane. This indicates

that as v increases the medium is most effective at screening the potential felt by these

quarks.

2. General baryon configurations

We wish to analyze a baryon configuration of Nc heavy external quarks in the N = 4

SYM plasma at nonzero temperature. The baryon construction in supergravity involves

Nc fundamental strings with the same orientation, beginning at the heavy quarks on the

AdS boundary and ending on the baryon vertex in the interior of AdS5, which is a D5

brane wrapped on the S5 [22]. In this section, we shall allow the Nc quarks to be placed at

arbitrary positions in the (x1, x2, x3)-space at the boundary of AdS. Note that the N = 4

SYM plasma contains no particles in the fundamental representation, so the quarks we

study here are external.

The gravity theory dual to N = 4 SYM theory at nonzero temperature is the AdS

black hole times a five-dimensional sphere, with the metric

ds2 = −f(r)dt2 +
r2

R2
d~x2 +

dr2

f(r)
+R2dΩ2

5, (2.1)

where

f(r) =
r2

R2

(

1 − r40
r4

)

. (2.2)

Here, dΩ2
5 is the metric for a unit S5, R is the curvature radius of the AdS metric, r is the

coordinate of the fifth dimension of AdS5 and r0 is the position of the black hole horizon.

The temperature of the gauge theory is given by the Hawking temperature of the black

hole, T = r0/(πR
2). And, the gauge theory parameters Nc and λ are given by

√
λ = R2/α′

and λ/Nc = g2
YM = 4πgs where 1/(2πα′) is the string tension and gs is the string coupling

constant. (So, large Nc and λ correspond to large string tension and weak string coupling

and thus justify the classical gravity treatment.)

We shall always work in the rest frame of the baryon configuration. This means that

in order to describe Nc quarks moving through the plasma with velocity v, say in the

x3-direction, we must boost the metric (2.1) such that it describes a N = 4 SYM plasma

moving with a wind velocity v in the negative x3-direction. We obtain

ds2 = −Adt2 + 2B dt dx3 + C dx2
3 +

r2

R2

(

dx2
1 + dx2

2

)

+
1

f(r)
dr2 +R2dΩ2

5 , (2.3)

where

A =
r2

R2

(

1 − r41
r4

)

, B =
r21r

2
2

r2R2
, C =

r2

R2

(

1 +
r42
r4

)

, (2.4)

with

r41 = r40 cosh2 η, and r42 = r40 sinh2 η. (2.5)
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We have defined the wind rapidity η via v = − tanh η. Although in section 3 we shall

specialize to circular baryon configurations as illustrated in figure 1, in this section we

describe the construction of a baryon configuration with Nc heavy external quarks placed

at arbitrary locations (x1, x2, x3) at r → ∞ in the boosted AdS metric (2.3).

The construction in this section can easily be generalized to baryon configurations a

large class of gauge theories at nonzero temperature, including N = 4 SYM as one example.

Consider any gauge theory that is dual in the large Nc and strong coupling limit to Type

IIB string theory in the supergravity approximation in a generic string frame metric that

can be written in the form

ds2 = gµν(r)dx
µdxν +

dr2

f(r)
+ e2ψ(r)ds25 , (2.6)

with the possibility of a nontrivial dilaton φ(r). As before, xµ = (t, ~x) = (t, x1, x2, x3)

describe the Yang-Mills theory coordinates (the boundary coordinates). Here, ds25 is the

metric of some five-dimensional compact manifold M5 that may not be S5. A specific choice

of gauge theory will correspond to specific choices of φ(r) and the various metric functions

appearing in (2.6). The metric (2.6) is not even the most general that we could analyze,

since for example we have not allowed the metric functions in (2.6) to depend on the

coordinates of the internal manifold M5 and since we have chosen the r-dependence of the

M5-metric to be a common factor exp(2ψ(r)), not some more complicated structure. Such

complications do not add qualitatively new features to the analysis of baryon configurations

in a metric of the form (2.6). Our construction of baryon configurations below starting from

the metric (2.6) could be applied to gauge theories known to have dual gravity descriptions

some of which are conformal and some not, without or with nonzero R-charge density, with

N = 4 supersymmetry or to certain theories with only N = 2 or N = 1 supersymmetry,

at nonzero or zero temperature, with or without a wind velocity. In our explicit definition

of and calculation of the screening length Ls in section 3, we shall return to the special

case (2.3) of hot N = 4 SYM theory with a wind velocity.

A baryon configuration in the supergravity metric (2.6) involves Nc fundamental strings

beginning at the external heavy quarks on the boundary (which we will take to be at

r = ∞) and ending on the baryon vertex in the interior, which is a D5 brane wrapped

on the compact manifold M5 [22]. We denote the positions in ~x-space where we place the

external quarks by ~q(a), with a = 1, · · ·Nc, and we take all the quarks to sit at the same

point in the compact manifold M5. We shall describe how to determine the location of the

D5-brane below. After so doing, we shall shift the origin of the ~x coordinates such that

the D5-brane sits at the origin, at ~xe = 0. We denote its position in the fifth dimension by

r = re. The total action of the system is then given by

Stotal =

Nc
∑

a=1

S
(a)
string + SD5 , (2.7)

where S
(a)
string denotes the action of the fundamental string connecting the a-th quark with

the D5-brane. Denoting the string worldsheet coordinates (τ, σ), we can choose

τ = t, σ = r, xi = xi(σ) , (2.8)

– 7 –



J
H
E
P
0
5
(
2
0
0
8
)
0
8
3

meaning that the shape of the a’th string worldsheet is described by functions x
(a)
i (r) that

extend from ~x(a)(re) = ~xe to ~x(a)(∞) = ~q(a). The Nambu-Goto action of one string can

then be written as

Sstring =
T

2πα′

∫

∞

re

dr

√

−g00
f

+ (g0ig0j − g00gij) x
′

ix
′

j ≡
T

2πα′

∫

dr Lstring, (2.9)

where T is the total time and where x′i ≡ ∂rxi. The action for the five-brane can be written

as

SD5 =
V(re)T V5

(2π)5α′3
, V(r) =

√−g00e−φ+5ψ, (2.10)

where V5 is the volume of the compact manifold M5 and V(re) can be considered to be the

gravitational potential for the D5-brane located at r = re.

In order to find a static baryon configuration, we must extremize Stotal, first with

respect to the functions x
(a)
i (r) that describe the trajectories of each of the Nc strings

and second with respect to ~xe and re, the location of the D5-brane. Because Stotal does

not depend on the x
(a)
i (r) explicitly, the variation with respect to x

(a)
i (r) leads to Euler-

Lagrange equations that have a first integral

∂L(a)
string

∂x
′(a)
i

=
(g0ig0j − g00gij) x

′(a)
j

L(a)
string

= const. ≡ K
(a)
i , (2.11)

where we have denoted the integration constants by K
(a)
i . Next, we extremize the action

with respect to variations in the position of the D5-brane, understanding that as we vary

its position we adjust the string trajectories as required by their Euler-Lagrange equations.

Extremizing the action with respect to the location of the D5-brane in ~x-space yields

equations which receive one contribution from the boundary term at the D5-brane at

r = re in the variation of each of the x
(a)
i (r), equations which take the form

∑

a

K
(a)
i = 0 . (2.12)

(What arises from the variation are the K
(a)
i evaluated at r = re, but the K

(a)
i are by

construction r-independent.) The constraint (2.12) is a force balance condition, encoding

the requirement that in a static baryon configuration the net force exerted by the Nc strings

on the D5-brane in the xi directions, with i = 1, 2 and 3, must vanish. Extremizing Stotal

with respect to re yields the r-direction force balance condition which we can write as

Nc
∑

a=1

H(a)

∣

∣

∣

∣

re

= Σ, (2.13)

where

H(a) ≡ L(a) − x
′(a)
i

∂L(a)

∂x
′(a)
i

=
−g00

f(r)Lastring

(2.14)
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is the “upward” (i.e. in the positive r-direction) force on the D5-brane from the a’th string,

meaning that the left-hand side of (2.13) is the upward force due to all the strings, and

where

Σ ≡ 2πα′

T
∂SD5

∂re
=

V5

(2π)4α′2

∂V(re)

∂re
(2.15)

is the downward gravitational force on the D5-brane, given its placement at r = re in

the curved spacetime (2.6). Including the contribution to the energy from the interaction

among the Nc string endpoints on the D5-brane (which has been calculated in simpler

settings than ours [25]) would affect our calculation only by modifying this downward force

somewhat.

Eqs. (2.11), (2.12) and (2.13) determine the shape of the string trajectories and the

location of the D5-brane, which is to say that they determine the baryon configuration for

a given choice of the positions of the quarks ~q(a). Used in this way, one would integrate the

first order equations (2.11), using the boundary conditions ~x(a)(∞) = ~q(a) to determine the

integration constants ~K(a)(~q(a), ~xe, re) for a given choice of ~xe and re. Eqs. (2.12) and (2.13)

can then be used to determine ~xe and re. Not all choices of ~q(a) will yield a static baryon

configuration. For a given quark distribution at the boundary, the question of whether

equations (2.11), (2.12) and (2.13) have solutions is a dynamical question depending on

the specific metric under consideration. We shall see specific examples of how this plays

out in section 3.

Alternatively, a baryon configuration can be specified by starting with a set of ~K(a)

satisfying (2.12), solving for re using (2.13), and integrating eqs. (2.11) outward from r = re
to the boundary at r = ∞, only then learning the quark positions ~q(a) in the gauge theory.

Instead of specifying ~K(a), one can equivalently specify ~s(a) ≡ ∂r~x
(a)(r)|r=re .

Whether we think of specifying conditions at r = re and integrating inwards or spec-

ifying conditions at the D5-brane, since we are considering the Nc → ∞ limit it is often

more convenient to introduce the density of quarks and strings instead of discrete position

variables. At the boundary, the quark configuration can be specified by a density of quarks

ρ(~q), which can be normalized as

∫

d3~q ρ(~q) = 1 . (2.16)

We can then rewrite (2.12) as

∫

d3~q ρ(~q) ~K(~q) = 0 . (2.17)

However, (2.13) cannot immediately be written in terms of ρ(~q) because the quantities

in (2.13) are evaluated at r = re, and unlike the K’s occurring in (2.12) are not r-

independent. So, we must use the string trajectories themselves to relate the density

of quarks at r = ∞ to a density of strings at r = re, as follows. For any given re and ~xe, a

solution ~x(r) to eqs. (2.11) describes a single string trajectory which connects a particular

point ~q at r = ∞ to the D5-brane at ~x(re) = ~xe. The string connects to the D5-brane with

a particular value of the “angle” ~s = ∂r~x(r)|r=re . So, the set of string trajectories ~x(r)
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with all possible choices of ~q determine a mapping from ~q onto ~s, where the ~q ’s specify

the location of quarks at infinity and the ~s ’s specify strings at the D5-brane. Since the

mapping corresponds to Hamiltonian “time” evolution (with r playing the role of time)

Liouville’s theorem tells us that a given ρ(~q) maps onto a ρV (~s) that specifies the density

of strings hitting the D5-brane as a function of angle given by

ρV (~s) = ρ(~q)

∣

∣

∣

∣

∂ (q1, q2, q3)

∂ (s1, s2, s3)

∣

∣

∣

∣

. (2.18)

In evaluating the Jacobian determinant, the ~q’s should be considered to be functions of

the ~s’s, with the function being the mapping defined by the string trajectories ~x(r). If the

solutions ~x(r) are nontrivial curved trajectories, then the relation between ρ(~q) and ρV (~s)

will be nontrivial. Eqs. (2.12) and (2.13) can now be recast in terms of ρV (~s), namely5

∫

d3~s ρV (~s) ~K(~s) = 0 (2.19)

and ∫

d3~s ρV (~s)H(~s) =
Σ

Nc
. (2.20)

Note that ~K(~s) is obtained by evaluating the left hand side of (2.11) at r = re, while H(~s)

is obtained by evaluating equation (2.14) at r = re.

We close this section with a description of one way in which the formalism that we

have developed can be used. Suppose that we wish to describe a baryon configuration in

which the quarks all lie on some closed two dimensional surface in ~x-space. For a given

re, we can then use (2.12) in the form (2.17) to determine the density of quarks along the

surface required for any choice of ~xe located inside the surface. Or, if the density of quarks

along the surface has been specified, we can use (2.12) to determine ~xe for a given re. We

then repeat this exercise for all values of re until we find an re that satisfies (2.13) in the

form (2.20).

In next section we apply (2.11), (2.12) and (2.13) to particular baryon configurations

in a N = 4 SYM plasma moving with a nonzero wind velocity.

3. Velocity dependence of baryon screening in N = 4 SYM theory

We now refocus on baryon configurations at rest in the plasma of N = 4 SYM theory

with temperature T moving with a wind velocity v = − tanh η in the x3 direction. The

gravity dual of this hot plasma wind is described by the metric (2.3). Following ref. [24],

we shall analyze baryon configurations in which the Nc quarks all lie in a single plane. In

section 3.1 we take the quarks to be uniformly distributed along a circle in the (x1, x2)-

plane, perpendicular to the direction of the wind. In section 3.2 we analyze a configuration

5Note that in the continuous limit,

1

N

X

a

(· · · ) →

Z

d
3
~s ρV (~s)(· · · ) =

Z

d
3
~q ρ(~q)(· · · ) .
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in which the quarks lie in the (x1, x3)-plane, parallel to the direction of the wind. We

expect that the two configurations we shall study are sufficient to illustrate the generic

aspects of the velocity dependence of baryon screening in N = 4 SYM theory.

3.1 Wind perpendicular to the baryon configuration

In this subsection we consider a baryon configuration lying in the (x1, x2)-plane (i.e. x3 = 0)

perpendicular to the wind direction. For simplicity, we arrange the Nc external quarks

uniformly around a circle of radius L as in [24], see figure 1. This is a simple example

within which we can illustrate many aspects of the general formalism of section 2 for

constructing baryon configurations, and define and study the velocity dependence of the

screening length.

With the quarks arranged uniformly around a circle, it is clear by symmetry that the

D5-brane must sit at the center of the circle, which we shall take to be at the origin: ~xe = 0.

Because of the rotational symmetry of the circular configuration and of the background

geometry (2.3), each of the Nc strings in figure 1 is equivalent. They all sit at x3 = 0, and

each can be described by a single function x(r), where x ≡
√

x2
1 + x2

2 extends from x = 0

and r = re, at the D5-brane, to x = L, at the boundary of AdS5. With the D5-brane at

~xe = 0 at the center of the circle, it is clear that the forces in the ~x directions exerted by

the strings on the D5-brane cancel, meaning that eqs. (2.12) are automatically satisfied.

The D5-brane sits at some r = re, which we shall determine for a given L using (2.13). So,

x(re) = 0 and x(∞) = L. Applying equations (2.9) and (2.10) to (2.3), we find that in this

case

Lstring =

√

A

(

(x′)2 r2

R2
+

1

f(r)

)

, (3.1)

and

SD5 =
NcT R

√

A(re)

8πα′
, (3.2)

where f(r) and A(r) were given in eqs. (2.2), (2.4) and (2.5). The equation (2.11) that

determines the shape of the string trajectory x(r) becomes

Ar2x′

R2Lstring
= K, (3.3)

where by symmetry there is only a single integration constant K for all the strings. The

r-direction force balance condition (2.13), namely the condition that the upward force on

the D5-brane exerted by the Nc strings balances the downward force of gravity, becomes

A

fLstring

∣

∣

∣

∣

re

=
1 + ρ4 cosh2 η

4
√

1 − ρ4 cosh2 η
≡ Σ(ρ, η), (3.4)

where we have defined

ρ ≡ r0
re

=
πR2T

re
. (3.5)

We must solve (3.3) and (3.4) simultaneously, in so doing obtaining both the position of the

D5-brane re and the shape of the strings x(r) corresponding to a static baryon configuration

with size L.
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The integration constant K must be the same at any r. Upon evaluating it at r = re
and after some algebraic manipulations, equations (3.3) and (3.4) can be written more

explicitly as

x′ =
K

√

(

A r2

R2 −K2
)

r2

R2 f(r)

, (3.6)

and
K2R4

r4e
= 1 − ρ4 cosh2 η − (1 − ρ4)Σ2, (3.7)

from which we obtain an explicit expression for the baryon radius L in terms of ρ and the

rapidity η:

L =
ρ

πT

(

1 − ρ4 cosh2 η − (1 − ρ4)Σ2
)

1

2

∫

∞

1
dy

1

(y4 − ρ4)
1

2 (y4 − 1 + (1 − ρ4)Σ2)
1

2

, (3.8)

where y ≡ r/re. We have evaluated (3.8) numerically, and in figure 2 we plot L versus ρ

for several values of η. We see that L is small when ρ is small (meaning that re is large).

As we decrease re, pulling the D5-brane in figure 1 downward, ρ increases and the size

of the baryon configuration L at first increases, then reaches a maximum value, and then

decreases to zero. For a given η, therefore, there is a maximum possible baryon radius,

which we denote Ls, beyond which no baryon configurations are found. We shall identify

Ls with the screening length, although in so doing we neglect a small correction that we

shall discuss below. We see from figure 2 that at any η for L < Ls(η) there are two solutions

with different values of ρ. We shall see below that the configuration with the larger ρ is

unstable and has a higher energy.

According to (3.8), the nonzero value of ρ at which L → 0 in figure 2 is the ρ at

which the right-hand side of (3.7) vanishes. At this value of ρ, K is zero and ∂rx|re = 0,

corresponding to a configuration whose strings have become vertical. Note that the D5-

brane becomes heavier when it is closer to the AdS black hole (i.e. Σ in (3.4) increases with

ρ), meaning that the strings emerging from the D5-brane must be more and more vertical

in order to hold it at rest. At some ρ, the strings become vertical and at larger ρ (smaller

re) no static configuration can be found. From (3.7) we also see that this largest possible

ρ is always smaller than the ρ = 1/
√

cosh η at which the speed v exceeds the local speed

of light at the position of the D5-brane.

At any L for which there are two string configurations possible in figure 2, we expect

that the solution with the larger ρ is unstable, as in the case of the string configuration

between a quark and antiquark [29]. This instability can be seen on qualitative grounds as

follows. For the solutions with smaller ρ, we see from figure 2 that L increases monotonically

with ρ. This means that if we deform the configuration by pulling the D5-brane downward

while keeping L fixed, the deformed configuration with its enlarged ρ has too small an L

to be static. The fact that L “wants” to be larger means that the upward force on the D5-

brane is greater than required to balance the downward force of gravity. So, there is a net

restoring force pulling the D5-brane back upwards and the original configuration is stable

against this deformation. In contrast, for the solutions with larger ρ we see from figure 2

– 12 –
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Figure 2: Baryon radius L versus ρ, where ρ = r0/re is the ratio of the position of the black hole

horizon to the position of the D5-brane, for several different values of the rapidity η of the hot

wind. The screening length Ls at a given η is the maximum of L(ρ), namely the largest L at which

a static baryon configuration can be found. We see that Ls decreases with increasing wind velocity.

that L decreases monotonically with ρ, meaning that if we pull the D5-brane downward,

L “wants” to be smaller and the upward force on the D5-brane is less than the downward

force of gravity (the downward force has increased more than the upward force) and the

D5-brane will accelerate downward. The configurations described by the part of the curve

in figure 2 for which L decreases with increasing ρ are therefore unstable. We shall see

below that these configurations have higher energy than the stable configurations with the

same L and smaller ρ.

We can use (3.8) and figure 2 to compare the length scale R2/re of the disturbance of

the gluon field induced by the Nc external quarks to 2L, the size of the circle of quarks

itself. In the small-ρ limit, (3.8) simplifies to

LT ≈ 0.4811 ρ

π
, (3.9)

which describes the linear region seen in all of the curves in figure 2 at small ρ. This implies

that at small ρ

R2

re
≈ 2.079L , (3.10)

comparable to 2L. We see from figure 2 that as we go from this small ρ regime towards

L = Ls, the ratio of R2/re to 2L increases by a further few tens of percent.

We see from figure 2 that the screening length Ls decreases with increasing velocity.

At zero velocity, Ls = 0.094/T as can be obtained from previous results [24]. We have

evaluated Ls as a function of rapidity η, and shall plot the result in figure 7, along with

analogous results from section 3.2 for the case where the wind velocity is parallel to the
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plane of the baryon configuration. From our numerical evaluation, we find that at large η

Ls ≈
a

T
√

cosh η
, (3.11)

with a = 0.0830. The screening length for a quark and antiquark separated by a distance

Lmeson moving through the plasma in a direction perpendicular to the dipole also takes the

form (3.11) in the high velocity limit, with a = 0.237 [9]. When we compare the Ls that

we have computed for the baryon configuration to Lmeson
s /2 (the “radius” of the meson

configuration at its screening length) we see that, in addition to having precisely the same

velocity dependence at high velocity, their numerical values are comparable. Finally, it is

perhaps not surprising that Lbaryon
s is somewhat smaller than Lmeson

s /2, for a given η and

T , since the baryon vertex (D5-brane) pulls the strings further downward, closer to the

horizon.

We can also find the large η dependence of Ls analytically. If we define

ρ̂ ≡ ρ
√

cosh η, L̂ ≡ L
√

cosh η (3.12)

and take the scaling limit in which

η → ∞ with ρ̂, L̂ held fixed, (3.13)

we find that cosh η drops out of the leading terms in eq. (3.8) and this equation becomes

L̂ =
ρ̂

πT

(

1 − ρ̂4 − Σ2
)

1

2

∫

∞

1
dy

1

y2 (y4 − 1 + Σ2)
1

2

+O
(

(cosh η)−
1

2

)

=
ρ̂

3πT

(

1 − ρ̂4 − Σ2
)

1

2
2F1

(

1

2
,
3

4
,
7

4
, 1 − Σ2

)

+O
(

(cosh η)−
1

2

)

. (3.14)

(Note that according to (3.4), Σ only depends on ρ̂.) The right-hand side of (3.14) is

function of ρ̂ that goes to zero at ρ̂ → 0 and at ρ̂ → 0.880, and that has a maximum at

ρ̂ = 0.666 where L̂ = 0.0830/T , yielding an Ls that is in precise agreement with (3.11).

We close this section by evaluating the energy of the baryon configurations that we

have constructed. The energy of one string can be found using Sstring and is given by

Estring =
1

2πα′

∫

∞

re

dr

√

A

(

(x′)2 r2

R2
+

1

f

)

=
T
√
λ

2ρ

∫

∞

1
dy

y4 − ρ4 cosh2 η

(y4 − ρ4)
1

2 (y4 − 1 + (1 − ρ4)Σ2)
1

2

, (3.15)

where y ≡ r/re. This energy is infinite because we have included the masses of the quarks.

As in refs. [9, 10], we regularize the baryon energy by subtracting the energy of (in this case

Nc) disjoint quarks in a hot plasma wind of velocity v, whose strings are dragging behind

them in the x3 direction according to the solution found in [12, 32]. This corresponds to

regulating the r-integral in (3.15) with a large-r cutoff Λ, subtracting

Emass =
Nc

2πα′

∫ Λ

r0

dr =
NcT

√
λ

2ρ

∫ Λ/re

ρ
dy , (3.16)
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Figure 3: The total energy of the baryon configuration with a given L (relative to that of Nc

disjoint quarks moving with the same velocity) for several values of the wind rapidity η. The lower

(higher) energy branch corresponds to the solution in figure 2 with lower (higher) ρ. The cusps

where the two branches meet are at L = Ls.

and then taking Λ to infinity. This procedure yields a finite answer. The total energy of

the baryon (strings plus D5-brane) becomes

Etotal =
NcT

√
λ

2

[

1

ρ

∫

∞

1
dy

(

y4 − ρ4 cosh2 η

(y4 − ρ4)
1

2 (y4 − 1 + (1 − ρ4)Σ2)
1

2

− 1

)

+ 1 − 1

ρ

+

√

1 − ρ4 cosh2 η

4ρ

]

, (3.17)

where the last term is the contribution of the D5 brane to the energy.

In figure 3 we plot the energy of the baryon configurations at several values of η. As

in figure 2, we see two configurations at every L < Ls. We have argued above that the

higher energy configurations (those with the larger ρ) are unstable, so we focus on the lower

branch. We see that at η = 0 this branch crosses zero energy at L = 0.073/T , whereas the

largest L at which a baryon configuration can be found is Ls = 0.094/T . This means that

for 0.073 < LT < 0.094, even the lower branch solutions have become metastable, as they

have more energy than Nc disjoint quarks. We see from figure 3 that this phenomenon

does not occur at larger velocities; in fact, it arises only for η ≤ 0.755 since at η = 0.755

the baryon configuration with L = Ls has the same energy as Nc disjoint quarks, i.e.

zero energy in figure 3. At the low velocities η < 0.755, a more precise definition of the

screening length would be to define it as the length at which the lower curve in figure 3

crosses zero. We see from figure 3 that by using Ls as our definition of the screening length

at all velocities, as we do for simplicity, we are introducing only a small imprecision at low
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velocities, η < 0.755. These considerations have no effect on our calculation of Ls at large

η, namely (3.11).

It is clear from (3.17) that in the large η limit (3.13) with L̂ held fixed and L therefore

decreasing, the energy scales as −√
cosh η. This scaling can also be deduced from figure 3,

as follows. The subtraction term (3.16) is defined such that for any given T and η, at small

enough L the potential energy E(L) is the same as in vacuum (i.e. for T = η = 0), namely

E(L) ∝ −1/L. And, if E ∝ −1/L and the E(L) curves for different η overlap as seen in

figure 3, then E must scale like −√
cosh η in the limit (3.13).

The baryon configuration that we have analyzed in this subsection is special in that

all Nc strings are equivalent. In the next subsection we shall analyze a configuration for

which this is not the case, for which we shall need the full formalism developed in section

2.

3.2 Wind parallel to the baryon configuration

We now analyze the case where the Nc quarks are moving through the plasma (or, equiva-

lently in their rest frame, feeling a hot wind blowing) in a direction parallel to their plane.

We shall keep the wind blowing in the x3 direction as before, meaning that the boosted

AdS black hole metric given by (2.3) is unchanged. We shall now put the Nc quarks in the

(x1, x3)-plane.

With the quarks in the (x1, x3)-plane and the wind velocity in the x3 direction, the

Nc strings in a circular baryon configuration are no longer equivalent, as the strings make

different angles relative to the wind direction. The Nc strings would not all hit the D5-

brane at the same angle in this case. Analyzing this case is possible, but we will instead

consider a simpler configuration in which all Nc strings hit the D5-brane symmetrically.

In terms of the formalism developed in section 2, we choose a configuration in which the

string density at the D5-brane is

ρV (s1, s2, s3) =
1

π
δ(s21 + s23 − s2) δ(s2) , (3.18)

where s is some constant and si = ∂rxi(r)|re . The distribution (3.18) corresponds to

requiring that the Nc strings hit the D5-brane with a uniform distribution in the azimuthal

angle φ in the (x1, x3)-plane and all with the same ∂rx|re = s. (Here, x ≡
√

x2
1 + x2

3.)

Unlike in the previous section, this specification of the baryon configuration in the vicinity

of r = re will not correspond to having the Nc quarks at r = ∞ arranged on a circle.

Note that (3.18) guarantees that the net force exerted on the D5-brane in the x1- and

x3-directions by the Nc quarks vanishes, meaning that (2.19), or equivalently (2.12), is

automatically satisfied. Given the choices that we have made in specifying our baryon

configuration, our task is twofold: we must determine s as a function of re such that the

forces on the D5-brane in the r-direction due to gravity and due to the strings cancel; and,

we must solve for the shape of the strings to determine what baryon configuration at r = ∞
our choices correspond to.

The shape of each string is specified by two functions x1(r) and x3(r) that we must

obtain. We shall find that, when projected onto the (x1, x3)-plane, the string worldsheets
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do not follow radial trajectories. That is, the trajectories x1(r) and x3(r) are not specified

just by x(r); their azimuthal angle φ is a nontrivial function of r also.

Applying equations (2.9) and (2.10) to (2.3) with nontrivial x1(r) and x3(r), we find

that

Lstring =

√

A

(

1

f(r)
+

(x′1)
2 r2

R2

)

+
(x′3)

2 r2f(r)

R2
, (3.19)

and find that the D5-brane action is given by (3.2) as before. With Lstring given by (3.19),

the equations of motion (2.11) can be rearranged to give

x′21 =

(

R4

r2

)(

K2
1

r2fA−R2K2
3A−R2K2

1f

)

, (3.20)

x′23 =

(

R4

f2r2

)(

K2
3A

2

r2fA−R2K2
3A−R2K2

1f

)

. (3.21)

Equation (2.13) for the balance of force in the radial direction becomes

∑

strings

RA/
√
f

√

A
(

R2 + fr2x′21
)

+ f2r2x′23

∣

∣

∣

∣

re

= NcΣ(ρ, η) , (3.22)

where Σ(ρ, η) is as in (3.4) and is the downward gravitational force on the D5-brane and

the left-hand side of (3.22) is the upward force due to the Nc strings. If we define φ to be

the azimuthal angle in the (x1, x3)-plane that a string makes at r = re where it connects

to the D5-brane, defined such that φ = 0 (φ = π/2) is in the positive-x3 (positive-x1)

direction, then our choice of having the Nc strings uniformly distributed in φ turns the

sum over strings in equation (3.22) into an integral over φ,

∑

strings

→ Nc

∫ 2π

0

dφ

2π
, (3.23)

and expression (3.22) becomes

RA√
f

∫ 2π

0

dφ

2π

1
√

AR2 + s2fr2
(

A sin2 φ+ f cos2 φ
)

∣

∣

∣

∣

∣

re

= Σ(ρ, η), (3.24)

where s = ∂rx|re was introduced in (3.18) and as before ρ ≡ r0/re.

The constants K1 and K3 must be the same at any r. By evaluating (3.20) and (3.21)

at r = re and rearranging, we determine that

K2
1 =

s2A2r4f sin2 φ

R2
(

AR2 + s2r2f
(

A sin2 φ+ f cos2 φ
))

∣

∣

∣

∣

re

, (3.25)

K2
3 =

s2r4f3 cos2 φ

R2
(

AR2 + s2r2f
(

A sin2 φ+ f cos2 φ
))

∣

∣

∣

∣

re

. (3.26)

With these integration constants now determined, we can integrate eqs. (3.20) and (3.21),

obtaining

x1(r) =
ρ3R4K1

r30

∫ r/re

1
dy

1√
Q
, (3.27)
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Figure 4: L versus ρ for strings oriented in the φ = 0, π/4, π/2 directions in the (x1, x3)-plane in

a baryon configuration immersed in a plasma moving in the x3-direction with rapidity η = 2. We

see that at a given ρ the distance L in the (x1, x3)-plane between a quark and the D5-brane at the

center of the baryon configuration depends on the angular position of the quark. This means that

the Nc quarks do not lie on a circle.

and

x3(r) =
ρ3R4K3

r30

∫ r/re

1
dy

y4 − ρ4 cosh2 η

y4 − ρ4

1√
Q
, (3.28)

where

Q ≡ (y4 − ρ4)(y4 − ρ4 cosh2 η) − R4ρ4K2
1

r40
(y4 − ρ4) − R4ρ4K2

3

r40
(y4 − ρ4 cosh2 η). (3.29)

Equations (3.27) and (3.28) specify the shape of the string worldsheets, while re (equiva-

lently, ρ) is determined in terms of s by (3.24).

The calculation proceeds as follows. First, we solve (3.24) numerically to obtain the s

required at a given ρ. Second, we pick a particular value of φ and use s to evaluate (3.25)

and (3.26), obtaining the r-independent, but φ-dependent, K1 and K3. Third, we evalu-

ate (3.27) and (3.28) numerically, thus obtaining the shape of the string with a particular

value of φ. The position of the quark at r = ∞ corresponding to this choice of φ is then

(x1(∞), x3(∞)) and we can determine L =
√

x1(∞)2 + x3(∞)2 for this choice of φ. Fourth,

we repeat the second and third steps for all values of φ.

In figure 4 we show the L obtained as we have just described at three values of φ, as

a function of ρ. We conclude from the fact that L is different for different values of φ that

the Nc quarks at r = ∞ are not arranged in a circle in the (x1, x3)-plane. We illustrate this

explicitly in figures 5 and 6. We started with circularly symmetric boundary conditions at

the D5-brane, but the resulting baryon configuration at the AdS boundary is “squashed”,

wider in the direction of motion of the baryon and narrower in the perpendicular direction.

Inspection of figure 4 or comparison of figures 5 and 6 shows that the shape of the baryon
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Figure 5: Strings projected on the AdS boundary for η = 2 and ρ = 0.37 for strings separated

in φ by π/12. (We have done all our calculations for Nc → ∞, but have shown only 24 quarks

in the figure.) Baryon motion is in the x3 direction. The figure is drawn in the rest frame of the

baryon, meaning there is a hot wind in the x3 direction. The Nc quarks that make up the baryon

configuration are not arranged in a circle: the “squashed circle” is wider in the direction of motion.

Note also that the projection of the strings are not straight lines.

-0.0002-0.0001 0 0.0001 0.0002
x3

-0.00015

-0.0001

-0.00005

0

0.00005

0.0001

0.00015

x1

Figure 6: Same as figure 5, but for ρ = 0.4550611, very close to the maximum ρ at which a baryon

configuration can be found at η = 2. This configuration is unstable, and has higher energy than

the configurations with comparable L’s at much lower ρ. However, it illustrates the “squashing”

of the baryon configuration away from a circular shape and the curvature of the projections of the

strings onto the (x1, x3) plane. Both these effects are present in figure 5, but are more visible here.

configuration at the AdS boundary changes with ρ, becoming more squashed as ρ increases.

In figures 5 and 6 we also see that the projections of the string worldsheets onto the
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Figure 7: The screening length Ls as a function of η with its large-η dependence
√

cosh η scaled

out. The solid curve is for the case of a wind velocity perpendicular to the plane of the baryon, as

in section 3.1. The other three curves are for wind velocity in the plane of the baryon, and show

the Ls for the strings that make an angle φ = 0, π/4, π/2 with the direction of the wind.

(x1, x3)-plane are not straight radial lines. Their curved shapes are strikingly similar to

the shapes of the projections of strings joining a static quark-antiquark in the meson

configurations analyzed in refs. [9, 10], although they are not precisely the same. Note that

eqs. (3.24)–(3.26) are symmetric in φ → π − φ, which implies that string configurations

are symmetric with respect to reflection in the x1 axis, i.e. under x3 → −x3, as is manifest

in figures 5 and 6. This forward-backward symmetry of the string configurations indicates

that the baryon configuration feels no drag as it is moved through the plasma, just as

for meson configurations [11, 9, 10], and as has been demonstrated previously for baryon

configurations with zero size [33].

It is straightforward to compute the energy of the baryon configurations that we have

found, as a function of ρ, but since (unlike in section 3.1) the configurations are not

characterized by a single L(ρ) there is no analogue of figure 3 here. Also, (again unlike

when the wind blows perpendicular to the baryon configuration as in section 3.1) we have

no simple argument for at what ρ the baryon configurations in this section become unstable.

Our argument in the previous section relied on the equivalence of all Nc strings, in that

at a single ρ there was a change from “a deformation that increases ρ makes all Nc strings

want to have larger L” to “a deformation that increases ρ makes all Nc strings want to have

smaller L”. Here, we see from figure 4 that there is a range of ρ within which a deformation

that increases ρ makes some strings want to have smaller L while other strings want to

have larger L. Within this range of ρ, our simple argument yields no conclusion and a full

stability analysis as in refs. [29] is required. We leave this to future work.

The maxima of curves as in figure 4 define a screening length Ls for each φ as a function
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Figure 8: The screening length Ls as a function of φ at a large value of η. Specifically, η = 10

corresponding to
√

cosh η = 1/(1 − v2)1/4 = 104.9.

of η. In figure 7 we plot LsT
√

cosh η = LsT/(1 − v2)1/4 versus η for different values of φ.

We find that the large-η dependence of the screening length has the same form in all cases,

namely

Ls, η≫1 ∝ 1

T
√

cosh η
. (3.30)

This is the same large η dependence found in section 3.1, eq. (3.11), and in mesons, eq. (1.3).

To make the former comparison manifest, in figure 7 we have also plotted LsT
√

cosh η

for the case analyzed in section 3.1 in which the wind velocity is perpendicular to the

plane of the baryon configuration. When the wind velocity is parallel to the plane of the

baryon configuration, Ls has a weak angular dependence. In particular, the constant of

proportionality in eq. (3.30) varies between 0.082 and 0.088 for different φ, as can be seen

in figure 7. A plot of Ls in the large η regime as a function of φ is given in figure 8,

which shows the smooth variation of Ls for large η as we change φ. Note also that (3.30)

is a good approximation all the way down to the small velocity limit η → 0, since the

proportionality constant in eq. (3.30) merely changes from its (φ-dependent) value at large

η to the (obviously φ-independent) value 0.094 at η = 0. The central conclusion to be

drawn from figure 7, then, is that the simple velocity scaling (1.6) is a good approximation

at all velocities and all angles.

The similarities between our results and those for the meson screening length go beyond

just the dominant velocity scaling. Indeed, figure 7 is strikingly similar to figure 7 of

ref. [10]. There too, for the quark-antiquark case, LsT
√

cosh η is largest at η = 0, a few

percent smaller for η → ∞ if the quark-antiquark dipole is oriented parallel to the wind,

and a few percent smaller still if the dipole is oriented perpendicular to the wind. The

only feature in our figure 7 that does not have a direct, almost quantitative, analogue in

ref. [10] is the very small difference between the curves for the two cases in which the wind
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direction is perpendicular to the line between the quark and the D5-brane, namely the

case in which the wind is parallel to the plane of the baryon configuration and the quark

is at φ = π/2 and the case in which the wind is perpendicular to the plane of the baryon

configuration.

Although we have only done our analysis for a wind that is either perpendicular to or

parallel to the plane of the baryon configuration, we expect that the qualitative features

that we have found in this section should all be present for any wind direction except

perpendicular.

In Subsections 3.1 and 3.2 we have analyzed two particular baryon configurations that

suffice to make our point regarding the velocity dependence of baryon screening. The

general formalism of section 2 can straightforwardly be applied to baryon configurations

with other shapes, whether specified by the density of quarks at infinity or the density of

strings at the D5-brane vertex. Technically, in order to solve equations (2.12) and (2.13),

it is simpler to specify the density of strings at the D5-brane as we have done in this

subsection, but there is no obstacle of principle to analyzing arbitrary densities of quarks

at infinity in any wind velocity. While the behavior at small η could differ for more general

configurations, we expect that in the large η limit, the scaling behavior (3.30) should still

apply. The formalism of section 2 can also be used to generalize our results to the plasmas of

other strongly coupled gauge theories. For example, following a line of reasoning developed

in ref. [14] for the meson sector, it can be shown that in a certain class of gauge theories

whose gravity duals are asymptotically AdS, as v → 1 the baryon screening length scales

as Ls ∝ (1 − v2)1/4/ε1/4, where ε is the energy density of the plasma. ε is proportional to

T 4 for the specific theory that we have analyzed, at any v, in this section.

4. Discussion

We have analyzed the screening of the static potential for a baryon configuration consisting

of Nc quarks in a circle (or slightly squashed circle) moving with velocity v through the

plasma of N = 4 SYM theory in a direction perpendicular (or parallel) to the plane of the

configuration. We find a screening length

Ls =
a(1 − v2)1/4

T
, (4.1)

where a depends only weakly on v and angles. For example, a = 0.094 for v = 0 while

a = 0.083 for v → 1 with the direction of motion perpendicular to the plane of the

baryon configuration, and 0.082 < a < 0.088 for the case where the motion is parallel

to the plane, again for v → 1. In this last case, a is smallest for those quarks on the

circle which are connected to the D5-brane junction at the center of the baryon by a

string that is perpendicular to the direction of motion. The velocity dependence in (4.1)

is precisely the same as that for the screening length defined by a quark and antiquark

moving through the plasma, and even the weak angular dependence of a is strikingly

similar. This is a confirmation of the robustness of the velocity dependence of screening

that in the meson sector has as a consequence the experimentally testable prediction that
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in a range of temperatures that is plausibly accessed in heavy ion collisions at RHIC (or at

the LHC) J/Ψ (or Υ) suppression may set in only for quarkonia moving with a transverse

momentum above some threshold [9]. In the baryon sector, it suggests that if baryons

composed of three charm quarks are ever studied in heavy ion collision experiments which

do not reach such high temperatures as to dissociate them at rest, their production could

also be suppressed above some threshold transverse momentum.

We have found that if the baryon configuration we study feels a wind velocity parallel

to its plane (and presumably at any direction except perpendicular) the Nc quarks are not

all equivalent. Those in a direction perpendicular to the wind are most affected by the

wind velocity, as in the configuration we analyze with azimuthally symmetric boundary

conditions at the D5-brane they are the ones that are pulled in closest to the D5-brane

and yet they are also the ones that have the smallest Ls. It is tempting to conclude from

this that as a function of increasing v or T these quarks will dissociate first. However,

justifying such a conclusion requires further work. It could be interesting to investigate

configurations that are held circular in a wind parallel to their plane, which would no longer

have azimuthally symmetric boundary conditions at the D5-brane. This would allow the

analysis of a sequence of configurations with the same shape but different size rather than a

sequence of configurations whose degree of squashing changes with size, as in our analysis.

However, a definitive conclusion requires comparing the energies of a baryon configuration

on the one hand with a well-separated quark and (Nc−1)-quarks+D5-brane configuration,

each trailing a dragging string, on the other hand. If the varying effectiveness of the

screening of the potential binding different quarks to the baryon that we have found were

to manifest itself as some quarks dissociating before others, as a function of increasing T

or v, this would suggest that when heavy baryons with Nc = 3 dissociate while moving

through a strongly coupled plasma, they may at least initially dissociate into a quark and

a diquark.
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